Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 10 gevonden artikelen
 
 
  Data modelling and the application of a neural network approach to the prediction of total construction costs
 
 
Titel: Data modelling and the application of a neural network approach to the prediction of total construction costs
Auteur: Emsley, Margaret W.
Lowe, David J.
Duff, A. Roy
Harding, Anthony
Hickson, Adam
Verschenen in: Construction management & economics
Paginering: Jaargang 20 (2002) nr. 6 pagina's 465-472
Jaar: 2002-09-01
Inhoud: Neural network cost models have been developed using data collected from nearly 300 building projects. Data were collected from predominantly primary sources using real-life data contained in project files, with some data obtained from the Building Cost Information Service, supplemented with further information, and some from a questionnaire distributed nationwide. The data collected included final account sums and, so that the model could evaluate the total cost to the client, clients' external and internal costs, in addition to construction costs. Models based on linear regression techniques have been used as a benchmark for evaluation of the neural network models. The results showed that the major benefit of the neural network approach was the ability of neural networks to model the nonlinearity in the data. The 'best' model obtained so far gives a mean absolute percentage error (MAPE) of 16.6%, which includes a percentage (unknown) for client changes. This compares favourably with traditional estimating where values of MAPE between 20.8% and 27.9% have been reported. However, it is anticipated that further analyses will result in the development of even more reliable models.
Uitgever: Routledge
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 10 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland