Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 13 gevonden artikelen
 
 
  A fuzzy neural network approach for contractor prequalification
 
 
Titel: A fuzzy neural network approach for contractor prequalification
Auteur: Lam, K. C.
Hu, Tiesong
Ng, S. Thomas
Skitmore, Martin
Cheung, S. O.
Verschenen in: Construction management & economics
Paginering: Jaargang 19 (2001) nr. 2 pagina's 175-188
Jaar: 2001-03-01
Inhoud: Non-linearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which lead to the process being more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eightyfive cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractors' ranking orders, the model efficiency (R 2 ) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The fuzzy neural network is a practical approach for modelling contractor prequalification.
Uitgever: Routledge
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 13 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland