Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 8 gevonden artikelen
 
 
  Learning Recursive Distributed Representations for Holistic Computation
 
 
Titel: Learning Recursive Distributed Representations for Holistic Computation
Auteur: Chrisman, Lonnie
Verschenen in: Connection science
Paginering: Jaargang 3 (1991) nr. 4 pagina's 345-366
Jaar: 1991
Inhoud: A number of connectionist models capable of representing data with compositional structure have recently appeared. These new models suggest the intriguing possibility of performing holistic structure-sensitive computations with distributed representations. Two possible forms of holistic inference, transformational inference and confluent inference, are identified and compared. Transformational inference was successfully demonstrated by Chalmers; however, the pure transformational approach does not consider the eventual inference tasks during the process of learning its representations. Confluent inference is introduced as a method for achieving a tight coupling between the distributed representations of a problem and the solution for the given inference task while the net is still learning its representations. A dual-ported RAAM architecture based on Pollack's Recursive Auto-Associative Memory is implemented and demonstrated in the domain of Natural Language translation.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 8 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland