Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 7 gevonden artikelen
 
 
  Bayesian subset selection for additive and linear loss function
 
 
Titel: Bayesian subset selection for additive and linear loss function
Auteur: Mieseke, Klaus-J.
Verschenen in: Communications in statistics
Paginering: Jaargang 8 (1979) nr. 12 pagina's 1205-1226
Jaar: 1979
Inhoud: Given k independent samples [image omitted]  of common size n from k populations πj,…,πk with distribution [image omitted]  the problem is to select a non-empty subset [image omitted]  form {πj,…,πk}, which is associated with "good" (large) θ-values. We consider this problem from a Bayesian approach. By choosing additive [image omitted]  and especially linear [image omitted]  loss functions we try to fill a gap lying in between the results of Deely and Gupta (1968) and more recent papers due to Goel and Rubin (1977), Gupta and Hsu (1978) and other authors. It is shown that under acertain "normal model" Seal's procedure turns out to be Bayes w.r.t. an unrealistic loss function where as Gupta's maximunl means procedure turns out to be ( for large n) asymptotically Bayes w.r. t. more realistic additive loss functions. Finally, in the appendix sonie bounds for [image omitted]  are derived (where [image omitted]  are fixed known and [image omitted]  to approximate the Bayes rules w.r.t. linear loss functions in cases where n is finite.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland