Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 20 gevonden artikelen
 
 
  Borrowing strength from past data in small domain prediction by kalman filtering - a case
 
 
Titel: Borrowing strength from past data in small domain prediction by kalman filtering - a case
Auteur: Chaudhuri, Arijit
Maiti, Tapabrata
Verschenen in: Communications in statistics
Paginering: Jaargang 23 (1994) nr. 12 pagina's 3507-3514
Jaar: 1994
Inhoud: Point and interval estimators for small domains based exclusively on current and domain specific sample observations are generally ineffective because of inadequate sample-sizes. So, borrowing strength from sample values for analogous domains and simultaneously from all relevant past and auxiliary data is useful in deriving improved small domain statistics. Postulating for simplicity a linear regression model with a single covariate and a zero intercept but a time-specific domain-invariant slope we start with “synthetic” generalized regression predictors for the domain totals. These borrow across only domains. For further improvements a simple autoregressive model is postulated for the slope parameters. Employing Kalman filtering the previous predictors are revised to borrow supplementary strength across time. As drastic simplifying assumptions are needed in such predictions the efficacy of the procedure is examined through an empirical exercise using live data as well as simulations. The numerical findings turn out encouraging.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 20 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland