Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 10 van 19 gevonden artikelen
 
 
  Image reconstruction by adaptive bayesian classification with a locally proportional prior
 
 
Titel: Image reconstruction by adaptive bayesian classification with a locally proportional prior
Auteur: Klein, Ruben
Press, S. James
Verschenen in: Communications in statistics
Paginering: Jaargang 22 (1993) nr. 10 pagina's 2925-2940
Jaar: 1993
Inhoud: This paper concerns the problem of reconstructing images from noisy data by means of Bayesian classification methods. In Klein and Press, 1992, the authors presented a method for reconstructing images called Adaptive Bayesian Classification (ABC). The ABC procedure was shown to preform very well in simulation experiments. The ABC procedure was multistaged; moreover, it involved selecting a prior at Stage n that was the posterior at Stage n - 1. In this paper the authors show that we can improve upon ABC for some problems by modifying the way we take the prior at each stage. The new proposal is to take the prior for the pixel label at each stage as proportional to the number of pixels with that label in a small neighborhood of the pixel. The ABC procedure with a locally proportional prior (ABC/LPP) tends to improve upon the ABC procedure for some problems because the prior in the iterative portion of ABC/LPP is contextual, while that in ABC in non- contextual.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 10 van 19 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland