Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 24 gevonden artikelen
 
 
  Accurate confidence intervals when nuisance parameters are present
 
 
Titel: Accurate confidence intervals when nuisance parameters are present
Auteur: Withers, C.S.
Verschenen in: Communications in statistics
Paginering: Jaargang 18 (1989) nr. 11 pagina's 4229-4259
Jaar: 1989
Inhoud: Let [image omitted]  be an estimate of an unknown parameter ω in Rpwith distribution determined by ω. (It is assumed that [image omitted]  is not a function of a lattice random variable (r.v.).) Suppose that for r ≥ 1 the rth order cross-cumulants of [image omitted]  have magnitude n1-r and can be expanded in powers of n-1 where n is known. For example[image omitted]  may be a function of the mean of n identically distributed random vectors. Let t(ω) be a real function on Rpwith finite derivatives. We show how to obtain confidence intervals (C.I.s) for t(ω) of level [image omitted]  for any given jWe call this a jth order C.I.. The expansion for the confidence limit is generally divergent so that it makes no sense to increase j indefinitely. Thus only a limited (though possibly large) number of significant digits are available for the confidence limit - a sort of 'statistical uncertainty principle'. For n less than a certain limit (which we give), only the usual first order C.I. is available - that based on the approximate normality of the Studentised statistic. In many cases higher order C.I.s are available even for very small sample sizes. When no parameters are present these results include the well known expansions of Cornish and Fisher(1937) and Fisher and Cornish(1960) - such as the percentiles of the Chi-square, Student and Z (equivalent to the F) distributions: as these expansions diverge, the number of significant digits available increases with the degrees of freedoms. Other well known special cases are the solutions to the Behrens-Fisher problem and the problem of obtaining a C.I. for a variance component given by Welch(1947, 1965). Over thirteen examples are given including C.I.s for interaction variances and intra-class correlation coefficients in a k-way random effects model, and a C.I. for the non-centrality parameter.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 24 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland