Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 9 van 11 gevonden artikelen
 
 
  Representations of multivariate normal distributions with special correlation structures
 
 
Titel: Representations of multivariate normal distributions with special correlation structures
Auteur: Six, F. B.
Verschenen in: Communications in statistics
Paginering: Jaargang 10 (1981) nr. 13 pagina's 1285-1295
Jaar: 1981
Inhoud: The evaluation of multivariate normal probability integrals has led several authors to reductions of certain integrals for special cases of the correlation matrix (ρij) of jointly normal variates. This reduction is obtained by representing the original normal variates as an appropriate linear combination of a larger set of variates. One important special case is ρij=+αiαj (i≠j), where -1≦αi≦1, which as Gupta (1963) noted, has been periodically and independently rediscovered. It is the purpose of this paper (1) to show that an analogous representation holds true for ρij = =-αiαj (i≠j), provided that [image omitted]  (2) to generalize the representations for ρij=+αiαj and ρij=-αiαj; and (3) to apply these representations to integrals for equi-coordinate and orthant probabilities. This application provides a method for finding the distribution of the largest of a set of equi-correlated normal variates. The method requires only the evaluation of a simple integral of Grubbs (1950) function which represents the distribution of the largest deviation from the sample mean. For ρ<0, this result is much simpler for computation than the only currently feasible method presented by Hoffman and Saw (1975).
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 9 van 11 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland