Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 18 gevonden artikelen
 
 
  Efficiency of lattice conditional independence models for multinormal samples with non-monotone missing data
 
 
Titel: Efficiency of lattice conditional independence models for multinormal samples with non-monotone missing data
Auteur: Wu, Lang
Perlman, Michael D.
Verschenen in: Communications in statistics
Paginering: Jaargang 29 (2000) nr. 2 pagina's 481-509
Jaar: 2000
Inhoud: For multivariate normal data with non-monotone (i.e. arbitrary) missing data patterns, lattice conditional independence (LCI) models determined by the observed data patterns can be used to obtain closed-form MLEs (Andersson and Perlman, 1991, 1993). In this paper, three procedures — LCI models, the EM algorithm, and the complete-data method — are compared by means of a Monte Carlo experiment. When the LCI model is accepted by the LR test, the LCI estimate is more efficient than those based on the EM algorithm and the complete-data method. When the LCI model is not accepted, the LCI estimate may lose efficiency but still may be more efficient than the EM estimate if the observed data is sparse. When the LCI model appears too restrictive, it may be possible to obtain a less restrictive LCI model by.discarding only a small portion of the incomplete observations. LCI models appear to be especially useful when the observed data is sparse, even in cases where the suitability of the LCI model is uncertain.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 18 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland