Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 9 van 20 gevonden artikelen
 
 
  Least squares parameter estimation in multiplicative noise models
 
 
Titel: Least squares parameter estimation in multiplicative noise models
Auteur: Xu, Peiliang
Shimada, Seiichi
Verschenen in: Communications in statistics
Paginering: Jaargang 29 (2000) nr. 1 pagina's 83-96
Jaar: 2000
Inhoud: A simple multiplicative noise model with a constant signal has become a basic mathematical model in processing synthetic aperture radar images. The purpose of this paper is to examine a general multiplicative noise model with linear signals represented by a number of unknown parameters. The ordinary least squares (LS) and weighted LS methods are used to estimate the model parameters. The biases of the weighted LS estimates of the parameters are derived. The biases are then corrected to obtain a second-order unbiased estimator, which is shown to be exactly equivalent to the maximum log quasi-likelihood estimation, though the quasi-likelihood function is founded on a completely different theoretical consideration and is known, at the present time, to be a uniquely acceptable theory for multiplicative noise models. Synthetic simulations are carried out to confirm theoretical results and to illustrate problems in processing data contaminated by multiplicative noises. The sensitivity of the LS and weighted LS methods to extremely noisy data is analysed through the simulated examples.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 9 van 20 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland