Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 21 of 26 found articles
 
 
  Robust predictive distributions based on the penalized blended weight hellinger distance
 
 
Title: Robust predictive distributions based on the penalized blended weight hellinger distance
Author: Park, Chanseok
Harris, Ian R.
Basu, Ayanendranath
Appeared in: Communications in statistics
Paging: Volume 26 (1997) nr. 1 pages 21-33
Year: 1997
Contents: Harris (Biometrika, 1989) suggests a predictive distribution based on bootstrapping using the maximum likelihood estimator of an unknown parameter. Basu and Harris (Biometrika, 1994) introduce robust estimative and bootstrap predictive distributions for discrete models by using the minimum Hellinger distance estimator of the unknown parameter instead of the maximum likelihood estimator. Generalizing the results of Basu and Harris, the present paper considers parametric predictive distributions using the minimum penalized blended weight Hellinger distance estimator for discrete models. Monte Carlo siniulations suggest that the proposed predictive distributions are attractive robust substitutes for the usual predictive distributions based on the maximum likelihood estimator under data contamination, and perform favorably compared to the predictive distributions suggested by Basu and Harris
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 21 of 26 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands