Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 19 van 20 gevonden artikelen
 
 
  Two-step jackknife bias reduction for logistic regression mles
 
 
Titel: Two-step jackknife bias reduction for logistic regression mles
Auteur: Bull, S.B
Hauck, W.W
Greenwood, C.M.T
Verschenen in: Communications in statistics
Paginering: Jaargang 23 (1994) nr. 1 pagina's 59-88
Jaar: 1994
Inhoud: Maximum likelihood estimates (MLEs) for logistic regression coefficients are known to be biased in finite samples and consequently may produce misleading inferences. Bias adjusted estimates can be calculated using the first-order asymptotic bias derived from a Taylor series expansion of the log likelihood. Jackknifing can also be used to obtain bias corrected estimates, but the approach is computationally intensive, requiring an additional series of iterations (steps) for each observation in the dataset.Although the one-step jackknife has been shown to be useful in logistic regression diagnostics and i the estimation of classification error rates, it does not effectively reduce bias. The two-step jackknife, however, can reduce computation in moderate-sized samples, provide estimates of dispersion and classification error, and appears to be effective in bias reduction. Another alternative, a two-step closed-form approximation, is found to be similar to the Taylo series method in certain circumstances. Monte Carlo simulations indicate that all the procedures, but particularly the multi-step jackknife, may tend to over-correct in very small samples. Comparison of the various bias correction proceduresin an example from the medical literature illustrates that bias correction can have a considerable impact on inference
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 19 van 20 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland