Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 20 van 25 gevonden artikelen
 
 
  Standard and robust orthogonal regression
 
 
Titel: Standard and robust orthogonal regression
Auteur: Ammann, Larry
Van Ness, John
Verschenen in: Communications in statistics
Paginering: Jaargang 18 (1989) nr. 1 pagina's 145-162
Jaar: 1989
Inhoud: A fast routine for converting regression algorithms into corresponding orthogonal regression (OR) algorithms was introduced in Ammann and Van Ness (1988). The present paper discusses the properties of various ordinary and robust OR procedures created using this routine. OR minimizes the sum of the orthogonal distances from the regression plane to the data points. OR has three types of applications. First, L2 OR is the maximum likelihood solution of the Gaussian errors-in-variables (EV) regression problem. This L2 solution is unstable, thus the robust OR algorithms created from robust regression algorithms should prove very useful. Secondly, OR is intimately related to principal components analysis. Therefore, the routine can also be used to create L1, robust, etc. principal components algorithms. Thirdly, OR treats the x and y variables symmetrically which is important in many modeling problems. Using Monte Carlo studies this paper compares the performance of standard regression, robust regression, OR, and robust OR on Gaussian EV data, contaminated Gaussian EV data, heavy-tailed EV data, and contaminated heavy-tailed EV data.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 20 van 25 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland