Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 25 gevonden artikelen
 
 
  A modified Kolmogorov-Smirnov test for the inverse gaussian density with unknown parameters
 
 
Titel: A modified Kolmogorov-Smirnov test for the inverse gaussian density with unknown parameters
Auteur: Edgeman, Rick L.
Scott, Robert C.
Pavur, Robert J.
Verschenen in: Communications in statistics
Paginering: Jaargang 17 (1988) nr. 4 pagina's 1203-1212
Jaar: 1988
Inhoud: The Kolmogorov-Smirnov (KS) test is an empirical distribution function (EDF) based goodness-of-fit test that requires the underlying hypothesized density to be continuous and completely specified. When the parameters are unknown and must be estimated from the data, standard tables of the KS test statistic are not valid. Approximate upper tail percentage points of the KS statistic for the inverse Gaussian (IG) distribution with unknown parameters are tabled in this paper. A study of the power of the KS test for the IG distribution indicates that the test is able todiscriminate between the IG distribution and distributions such as the uniform and exponentialdistributions that are very different in shape, but is relatively unable to discriminate between the IG distribution and distributions that are similar in shape such as the lognormal and Weibull distributions. In modeling settings the former distinction is typically more important to make than the latter distinction.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 25 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland