Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 10 van 14 gevonden artikelen
 
 
  Maximum likelihood estimation in a Weibull regression model with type-1 censoring: a Monte Carlo study
 
 
Titel: Maximum likelihood estimation in a Weibull regression model with type-1 censoring: a Monte Carlo study
Auteur: Elperin, T.
Gertsbakh, I.
Verschenen in: Communications in statistics
Paginering: Jaargang 16 (1987) nr. 2 pagina's 349-371
Jaar: 1987
Inhoud: Results of the Monte Carlo study of the performance of a maximum likelihood estimation in a Weibull parametric regression model with two explanatory variables are presented. One simulation run contained 1000 samples censored on the average by the amount of 0-30%. Each simulatedsample was generated in a form of two-factor two-level balanced experiment. The confidence intervals were computed using the large-sample normal approximation via the matrix of observed information. For small sample sizes the estimates of the scale parameter b of the loglifetime were significantly negatively biased, which resulted in a poor quality of confidence intervals for b and the low-level quantiles. All estimators improved their quality when the nominal value of b decreased. A moderate amount of censoring improved the quality of point and confidence estimation. The reparametrization b 7 produced rather accurate confidence intervals. Exact confidence intervals for b in case of non-censoring were obtained using the pivotal quantity b/b.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 10 van 14 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland