Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 16 gevonden artikelen
 
 
  Bootstrapping by monte carlo versus approximating the estimator and bootstrapping exactly: Cost and performance
 
 
Titel: Bootstrapping by monte carlo versus approximating the estimator and bootstrapping exactly: Cost and performance
Auteur: Oldford, R. Wayne
Verschenen in: Communications in statistics
Paginering: Jaargang 14 (1985) nr. 2 pagina's 395-424
Jaar: 1985
Inhoud: Approximations to the bootstrap estimate of bias and variance may be obtained by replacing the estimate [image omitted]  to be bootstrapped by one which is linear, or [image omitted] ,or quadratic,[image omitted] , in the resampling vector p. The bootstrap bias and variance of [image omitted]  and [image omitted]  may then be evaluated analytically. These estimators are discussed and then investigated via a Monte Carlo experiment when [image omitted]  is the least squares regression coefficient estimate. Included amongst these bias and variance estimates are the standard jackknife, Jaeckel's [1972] infinitesimal jackknife, and Hinkley's [1977] jackknife. Good performers included a quadratic infinitesimal jackknife and the Monte Carlo evaluated bootstrap when the number of replicates was about 6 or 7 times the sample size. Poor performers included the standard jackknife and Hinkley's. Further, when computational costs were held equal, bootstrapping by Monte Carlo did better than the jackknife.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 16 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland