Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 7 gevonden artikelen
 
 
  Bayesian analysis of outliers via akaike's predictive likelihood of a model
 
 
Titel: Bayesian analysis of outliers via akaike's predictive likelihood of a model
Auteur: Kitagawa, Genshiro
Verschenen in: Communications in statistics
Paginering: Jaargang 13 (1984) nr. 1 pagina's 107-126
Jaar: 1984
Inhoud: A set of independent observations is assumed to come from one or more normal populations having the same unknown variance and different unknown means. Ignorance priors are associated with these parameters. The number of populations is also unknown as is the number of observations from each, but priors are chosen for these quantities which make it very likely that one population is dominant. Observations from the rest are considered outliers. Using these priors in conjunction with Akaike's predictive likelihood, which is derived for the class of models considered, one can obtain a quasi-Bayesian posterior probability for each possible model. A “robust” estimate of the mean value of the dominant population and “corrected” values for the outliers can be calculated from the posterior probabilities, once the outliers have been designated. Darwin's data and Herndon's data are analyzed to illustrate the procedure.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland