Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 7 gevonden artikelen
 
 
  Estimation of an Overidentified Equation in an Econometric Model by the Method of Generalized Least Squares
 
 
Titel: Estimation of an Overidentified Equation in an Econometric Model by the Method of Generalized Least Squares
Auteur: Chakravarti-Kelm, Monique
Verschenen in: Communications in statistics
Paginering: Jaargang 1 (1973) nr. 2 pagina's 167-181
Jaar: 1973
Inhoud: As a mathematical preliminary, we first prove by construction in Section III, that there always exists a matrix B of the form m×n and of rank r, which has the shortest Euclidean distance from a given matrix A of the form m×n and of rank greater than or equal to r. B may be called the rank r nearest Euclidean neighbour of the matrix A. This result becomes handy in Section IV where we show how to estimate the coefficients of an overidentified equation of an econometric model, by the method of generalized least squares. Linear estimation appropriate for a multivariate linear model is first used to estimate the coefficients of the matrix A of an econometric model in its reduced form, xt = A zt + εt. Next, these estimators are used to derive the estimators of the coefficients of the overidentified equation together with improved estimators of the coefficients of the matrix A. Although presented in the context of econometrics, the statistical model and the estimation procedure will fit in in other areas of research as well.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland