Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 12 van 26 gevonden artikelen
 
 
  Generalized hilbert numerators
 
 
Titel: Generalized hilbert numerators
Auteur: Snellman, Jan
Verschenen in: Communications in algebra
Paginering: Jaargang 27 (1999) nr. 1 pagina's 321-333
Jaar: 1999
Inhoud: It is a well-known fact that if K is a field, then the Hilbert series of a quotient of the polynomial ring [image omitted]  by a homogeneous ideal is of the form [image omitted]  we call the polynomial q(t) the Hilbert numerator of the quotient algebra. We will generalize this concept to a class of non-finitely generated, graded, commuta-tive algebras, which are endowed with a surjective “co-filtration” of finitely generated algebras. Then, although the Hilbert series themselves can not be defined (since the sub-vector-spaces involved have infinite dimension), we get a sequence of Hilbert numerators qn(t), which we show converge to a power series in Z[[t]]. This power series we call the (generalized) Hilbert numerator of the non-finitely generated algebra. The question of determining when this power series is in fact a polynomial is the topic of the last part of this article. We show that quotients of the ring R' by homogeneous ideals that are generated by finitely many monomials have polynomial Hilbert numerator, as have quotients of R' by ideals that are generated by two homogeneous elements. More generally, the Hilbert numerator is a polynomial whenever the ideal is generated by finitely many homogeneous elements, the images of which form a regular sequence under all but finitely many of the truncation homomorphisms ρn.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 12 van 26 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland