Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 9 van 27 gevonden artikelen
 
 
  Formal power series representations of free exponential groups
 
 
Titel: Formal power series representations of free exponential groups
Auteur: Gaglione, A. M.
Myasnikov, A. G.
Remeslennikov, V. N.
Spellman, D.
Verschenen in: Communications in algebra
Paginering: Jaargang 25 (1997) nr. 2 pagina's 631-648
Jaar: 1997
Inhoud: A classical result of Magnus asserts that a free group F has a faithful representation in the group of units of a ring of non-commuting formal power series with integral coefficients. We generalize this result to the category of A-groups, where A is an associative ring or an Abelian group. We say that a free A-group FA has a faithful Magnus representation if there is a ring B containing A as an additive subgroup (or a subring) such that FA is faithfully represented (exactly as in Magnus' classical result in the case A = Z)in the group of units of the ring of formal power series in non-communting indeterminater over B.The three principal results are: (I) If A is a torsion free Abelian group and FA is a free A-groupp of Lyndon' type, then FA has a faithful Magnus representation; (II) If A is an ω-residually Z ring, then FA has a faithful Magnus representation;(III) for every nontrivial torsion-free Abelian group A, FA has a faithful Magnus representation in B[[Y]] for a suitable ring B in and only if FQ has a faithful Magnus representation in Q[[Y]].
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 9 van 27 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland