Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 13 gevonden artikelen
 
 
  Discrete Valuations Extend to Certain Algebras of Quantum Type
 
 
Titel: Discrete Valuations Extend to Certain Algebras of Quantum Type
Auteur: Moawad, Hussein
Van Oystaeyen, Freddy
Verschenen in: Communications in algebra
Paginering: Jaargang 24 (1996) nr. 8 pagina's 2551-2566
Jaar: 1996
Inhoud: So-called “quantized” algebras are popular objects of study in non-commutative algebra. Usually such algebras are either positively graded Ore domains R with R0 = K a field and R = K[R1], R1 being a finite dimensional K vectorspace, or else filtered rings having a ring of forementioned type for its associated graded ring. We show that every discrete valuation of K extends to a valuation, in the sence of O. Schilling (cf. [S]), of the skewfield of fractions, Δ = Qcl(R), of the Ore domain R (Proposition 2.3. and Corollary 2.8.). Such extension property has long been known to fail for finite dimensional skewfields over K; its validity in the case of several quantized algebras may be viewed as a consequence of the rigidity of their defining relations. Our result opens the door for a more arithmetical study of Δ e.g. in case K is a numberfield or an algebraic function field of a curve; for an application in this direction we refer to a first version of some divisor calculus started in [VW].
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 13 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland