Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 21 van 27 gevonden artikelen
 
 
  Rings with finitely many nilpotent elements
 
 
Titel: Rings with finitely many nilpotent elements
Auteur: Klein, Abraham A.
Bell, Howard E.
Verschenen in: Communications in algebra
Paginering: Jaargang 22 (1994) nr. 1 pagina's 349-354
Jaar: 1994
Inhoud: It is well-known that a ring with no nonzero nilpotent elements - a so-called reduced ring - is a subdirect product of domains. Moreover, as we have recently shown [2], a prime ring with only finitely many nilpotent elements is either a domain or is finite. In view of these results, it is natural to ask what can be said in general about rings with only finitefy many nilpotent elements. A crucial property of such rings is that they contain no infinite zero subrings, hence we are led to consider rings with this property also. Our principal result is that for any ring R with only finitely many nilpotent elements[image omitted]  is a direct sum of a reduced ring and a finite ring, where p(R) denotes the prime radical of R. One consequence is a finiteness theorem for periodic rings; another is the rather surprising result that every ring with infinitely many nilpotent elements has an infinite zero subring.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 21 van 27 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland