Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 12 van 13 gevonden artikelen
 
 
  Separable polynomials over finite dimensional algebras
 
 
Titel: Separable polynomials over finite dimensional algebras
Auteur: Finston, David R.
Verschenen in: Communications in algebra
Paginering: Jaargang 13 (1985) nr. 7 pagina's 1597-1626
Jaar: 1985
Inhoud: In [5] it was shown that for a polynomial P of precise degree n with coefficients in an arbitrary m-ary algebra of dimension d as a vector space over an algebraically closed fields, the zeros of P together with the homogeneous zeros of the dominant part of P form a set of cardinality nd or the cardinality of the base field. We investigate polynomials with coefficients in a d dimensional algebra A without assuming the base field k to be algebraically closed. Separable polynomials are defined to be those which have exactly nd distinct zeros in K˜ O×k A K˜ where K˜ denotes an algebraic closure of k. The main result states that given a separable polynomial of degree n, the field extension L of minimal degree over k for which L O×k A contains all nd zeros is finite Galois over k. It is shown that there is a non empty Zariski open subset in the affine space of all d-dimensional k algebras whose elements A have the following property: In the affine space of polynomials of precise degree n with coefficients in A there is a non empty Zariski open subset consisting of separable polynomials; in other polynomials with coefficients in a finite dimensional algebra are “generically” separable.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 12 van 13 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland