Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 7 gevonden artikelen
 
 
  A NUMERICAL ANALYSIS OF IGNITION TO STEADY DOWNWARD FLAME SPREAD OVER A THIN SOLID FUEL
 
 
Titel: A NUMERICAL ANALYSIS OF IGNITION TO STEADY DOWNWARD FLAME SPREAD OVER A THIN SOLID FUEL
Auteur: Wu, Kuo-Kuang
Chen, Chiun-Hsun
Verschenen in: Combustion science and technology
Paginering: Jaargang 175 (2003) nr. 5 pagina's 933-964
Jaar: 2003-05
Inhoud: A numerical analysis using an unsteady combustion model is presented to study the ignition and subsequent downward flame spread over a thermally thin solid fuel in a gravitational field. The solid-fuel temperature rises gradually in the heat-up stage and the pyrolysis becomes more intense. Ignition, including the induction period and thermal runaway, occurs as soon as a flammable mixture is formed and the gas-phase temperature, heated by the solid fuel, becomes high enough. During the induction period, the reactivity and temperature in the gas phase are mutually supportive. The thermal runaway consists of a burning premixed flame as the flow moves with the flame front. This is followed by a transition from a premixed flame into a diffusion flame. The flame front extends along and toward the upstream virgin fuel as the diffusion flame is formed. Finally, steady flame spread takes place as burnout appears. The ignition delay time is found to be controlled mainly by the time required to form the flammable mixture and is almost independent of the gravity level and the ambient oxygen index. The ignition delay time increases nearly linearly with an increase in solid-fuel thickness within the range of 0.005\,{\rm cm}\le {\bar \tau}\le 0.02\,{\rm cm} and is proportional to ({\bar Q}_{\max})^{-1.11} within 2\,{\rm W/cm}^2\le\bar Q_{\max}\le 8\,{\rm W/cm}^2 . The steady downward flame-spread rate decreases with increases in the gravity level or fuel thickness and with decreases in the ambient oxygen index but is independent of the incident peak heat flux. The blowoff limit is around 6.7\,{\bar g}_{\rm e} and the extinction limit is found to be Y O ∞ = 0.131.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland