Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 11 gevonden artikelen
 
 
  AN IMPROVED PENG-ROBINSON EQUATION OF STATE WITH A NEW TEMPERATURE DEPENDENT ATTRACTIVE TERM
 
 
Titel: AN IMPROVED PENG-ROBINSON EQUATION OF STATE WITH A NEW TEMPERATURE DEPENDENT ATTRACTIVE TERM
Auteur: Fotouh, K.
Shukla, K.
Verschenen in: Chemical engineering communications
Paginering: Jaargang 159 (1997) nr. 1 pagina's 209-229
Jaar: 1997-05-01
Inhoud: An improved form of the Peng-Robinson cubic equation of state has been proposed. The temperature dependence of the attractive term has been modified so as to accurately represent vapor pressures of several fluids with large acentric factors from triple point to close to the critical point. The prediction of saturated liquid volume is also improved by introducing volume translation term in the equation of state. Comparisons of theoretical results with experimental data are made for the vapor/liquid phase equilibria of 44 pure fluids including nonpolar, polar and associating fluids. Our results show that the modified Peng-Robinson equation of state can represent accurately saturated vapor pressures of the fluids investigated in this paper, and it is more accurate than the Peng-Robinson equation of state and its earlier modifications due to Stryjek and Vera (1986) and Twu et al. (1995rpar;. Incorporation of the volume translation term in the equation of state has been found to improve the accuracy of saturated liquid volume significantly.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 11 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland