Digital Library
Close Browse articles from a journal
 
<< previous   
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 9 of 9 found articles
 
 
  The potential for translocation of marine species via small-scale disruptions to antifouling surfaces
 
 
Title: The potential for translocation of marine species via small-scale disruptions to antifouling surfaces
Author: Piola, Richard F.
Johnston, Emma L.
Appeared in: Biofouling
Paging: Volume 24 (2008) nr. 3 pages 145-155
Year: 2008
Contents: Vessel hull fouling is a major vector for the translocation of nonindigenous species (NIS). Antifouling (AF) paints are the primary method for preventing the establishment and translocation of fouling species. However, factors such as paint age, condition and method of application can all reduce the effectiveness of these coatings. Areas of hull that escape AF treatment (through limited application or damage) constitute key areas that may be expected to receive high levels of fouling. The investigation focused on whether small-scale (mm2 to cm2) areas of unprotected surface or experimental 'scrapes' provided sufficient area for the formation of fouling assemblages within otherwise undamaged AF surfaces. Recruitment of fouling taxa such as algae, spirorbids and hydroids was recorded on scrapes as narrow as 0.5 cm wide. The abundance and species richness of fouling assemblages developing on scrapes ≥1 cm often equalled or surpassed levels observed in reference assemblages totally unprotected by AF coatings. Experiments were conducted at three sites within the highly protected and isolated marine park surrounding Lady Elliott Island at the southernmost tip of the Great Barrier Reef, Australia. Several NIS were recorded on scrapes of AF coated surfaces at this location, with 1-cm scrapes showing the greatest species richness and abundance of NIS relative to all other treatments (including controls) at two of the three sites investigated. Slight disruptions to newly antifouled surfaces may be all that is necessary for the establishment of fouling organisms and the translocation of a wide range of invasive taxa to otherwise highly protected marine areas.
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 9 of 9 found articles
 
<< previous   
 
 Koninklijke Bibliotheek - National Library of the Netherlands