Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 6 of 8 found articles
 
 
  Extracts of North Sea macroalgae reveal specific activity patterns against attachment and proliferation of benthic diatoms: a laboratory study
 
 
Title: Extracts of North Sea macroalgae reveal specific activity patterns against attachment and proliferation of benthic diatoms: a laboratory study
Author: Lam, C.
Grage, A.
Schulz, D.
Schulte, A.
Harder, T.
Appeared in: Biofouling
Paging: Volume 24 (2008) nr. 1 pages 59-66
Year: 2008
Contents: A variety of macroalgae (Ceramium rubrum, Corallina officinalis, Palmaria palmata, Mastocarpus stellatus, Fucus vesiculosus, Cladophora rupestris, Ulva sp.) were investigated by scanning electron microscopy to visualize epiphytic colonizers. The macroalgae differed in terms of their epiphytic coverage of bacteria, fungi and diatoms. Macroalgae, largely devoid of epiphytic diatoms, were hypothesized to employ effective antifouling means to reduce epiphytic coverage, whilst heavily fouled macroalgae were proposed to lack antifouling strategies. To test these hypotheses from an allelochemical perspective with regard to fouling diatoms, dichloromethane-methanol (1:1) crude extracts of macroalgae were concentrated in dimethylsulfoxide and investigated in diatom attachment and proliferation assays using four benthic diatoms (Nitzschia sp., Navicula phyllepta, Navicula arenaria and Amphora sp.). Algal extracts exhibited a distinct pattern of activity against the test diatoms, suggesting a targeted and selective effect of macroalgal metabolites on individual fouling diatoms. The main outcome of this study was that visual inspection and quantitative categorization of epiphytic colonizers on macroalgal thalli could not be used to predict reliably whether macroalgae employed a chemical defense mechanism.
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 6 of 8 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands