Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 7 of 8 found articles
 
 
  Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on populations of Meloidogyne incognita and growth of tomato
 
 
Title: Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on populations of Meloidogyne incognita and growth of tomato
Author: Siddiqui, Zaki A.
Akhtar, M. Sayeed
Appeared in: Biocontrol science and technology
Paging: Volume 18 (2008) nr. 3 pages 279-290
Year: 2008
Contents: Effects of four antagonistic fungi (Paecilomyces lilacinus, Pochonia chlamydosporia, Trichoderma harzianum and Gliocladium virens) alone and together with a plant growth promoting rhizobacterium Pseudomonas putida, an arbuscular mycorrhizal fungus Glomus intraradices or with composted cow manure (CCM) were assessed on the growth of tomato and on the reproduction of Meloidogyne incognita in glasshouse experiments. Application of all antagonistic fungi (except G. virens), P. putida, G. intraradices or CCM caused a significant increase in the growth of plants without nematodes. However, use of either of these fungi, P. putida, G. intraradices and CCM against plants with nematodes caused a significant increase in tomato growth. Paecilomyces lilacinus caused a 42% increase in the growth of nematode-inoculated plants followed by P. chlamydosporia (36%), T. harzianum (18%) and G. virens (15%). CCM caused about 57% increase in the growth of nematode-inoculated plants followed by P. putida (37%) and G. intraradices (31%). Maximum increase (71%) in the growth of nematode-inoculated plants was observed when CCM was used with P. lilacinus. Moreover, P. lilacinus caused a high reduction (55%) in galling and nematode multiplication, while G. virens the least (25%). Use of P. putida also caused a 39% reduction in galling and nematode multiplication followed by CCM (34%) and G. intraradices (32%). Combined use of CCM with P. lilacinus caused maximum reduction (79%) in galling and nematode multiplication. Re-isolation of antagonistic fungi from nematodes revealed that P. lilacinus parasitised more females and eggs than other antagonistic fungi. Root colonisation by P. putida was increased with P. lilacinus, while colonisation by G. intraradices was reduced in the presence of antagonistic fungi.
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 7 of 8 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands