Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 11 van 12 gevonden artikelen
 
 
  Performance analysis of unsupervised optimal fuzzy clustering algorithm for MRI brain tumor segmentation
 
 
Titel: Performance analysis of unsupervised optimal fuzzy clustering algorithm for MRI brain tumor segmentation
Auteur: Blessy, S.A. Praylin Selva
Sulochana, C. Helen
Verschenen in: Technology & health care
Paginering: Jaargang 23 (2014) nr. 1 pagina's 23-35
Jaar: 2014-11-18
Inhoud: BACKGROUND: Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. OBJECTIVE: To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. METHODS: Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. RESULTS: Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. CONCLUSIONS: Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 11 van 12 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland