Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 14 gevonden artikelen
 
 
  Classification of atherosclerotic and non-atherosclerotic individuals using multiclass state vector machine
 
 
Titel: Classification of atherosclerotic and non-atherosclerotic individuals using multiclass state vector machine
Auteur: Kumar, Paulraj Ranjith
Priya, Mohan
Verschenen in: Technology & health care
Paginering: Jaargang 22 (2014) nr. 4 pagina's 583-595
Jaar: 2014-07-02
Inhoud: BACKGROUND: Coronary artery disease due to atherosclerosis is an epidemic in India. An estimated 1.3 million Indians died from this in 2000. The projected death from coronary artery disease by 2016 is 2.98 million. OBJECTIVE: To build an effective model which assorts the individuals, whether they belong to the normal group, risk group and pathologic group regarding atherosclerosis in real time by doing necessary preprocessing techniques and to compare the performance with other state-of-the-art machine learning techniques. METHODS: In this work we have employed STULONG dataset. We have made a deep case study in selecting the attributes which contributes for higher accuracy in predicting the target. The selected attributes includes missing values. Initially our work includes imputation of missing values using Iterative Principal Component Analysis (IPCA). The second step includes selecting best features using Fast Correlation Based Filter (FCBF). Finally the classifier Multiclass Support Vector Machine (SVM) with kernel Radial Basis Function (RBF) is used for classification of atherosclerotic community. RESULTS: For the subjects belonging to the classes of normal, risk and pathologic, our methodology has outperformed with an accuracy of 99.85%, 99.80% and 99.46% respectively. CONCLUSION: The combined optimization methods such as Iterative Principal Component Analysis (IPCA) for missing value imputation, Multiclass SVM for classifying normal, risk and pathologic community in real time has performed with overall accuracy of about 98.97%. The essential pre-processing technique, Fast Correlation Based Filter (FCBF) was employed to further intensifying the target.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 14 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland