Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 7 gevonden artikelen
 
 
  Prediction methods for babies' birth weight using linear and nonlinear regression analysis
 
 
Titel: Prediction methods for babies' birth weight using linear and nonlinear regression analysis
Auteur: Ilker Etikan
Musa Kazim Çaglar
Verschenen in: Technology & health care
Paginering: Jaargang 13 (2005) nr. 2 pagina's 131-135
Jaar: 2005-05-26
Inhoud: The aim of this study is to determine more accurate prediction method between linear and non-linear methods for prediction of babies' birth weight among maternal demographic characteristics. Three hundred pregnant women were included in the study. Blood glucose level before and after ingestion of glucose load, age, body mass index, % of change in weight during pregnancy, height, gestational age, parity, fetal sex, were collected as independent variables and baby birth weight as dependent variable. In linear regression, least squares estimation method was used to estimate parameters. Non-linear regression method was performed using neural network model with multilayer perceptrons, back propagation method was preferred as learning algorithm. Coefficient of determination, R^2, of the linear regression equation was found 59.8% and the standard error of the estimate was calculated as 325.69 gr. In non-linear regression method R^2 value was also found 59.8% and standard error of estimate was calculated as 320.30 gr. According to the results of the present study, one method is not significantly better than the other. When 'accuracy in prediction' is aimed, it is better to use the two methods and compare the results, and then decide on the selection of the favourable method.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland