Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 10 gevonden artikelen
 
 
  Is there an optimal age for recovery from motor cortex lesions? II. behavioural and anatomical consequences of unilateral motor cortex lesions in perinatal, infant, and adult rats
 
 
Titel: Is there an optimal age for recovery from motor cortex lesions? II. behavioural and anatomical consequences of unilateral motor cortex lesions in perinatal, infant, and adult rats
Auteur: Bryan Kolb
Jan Cioe
Ian Q. Whishaw
Verschenen in: Restorative neurology and neuroscience
Paginering: Jaargang 17 (2001) nr. 2-3 pagina's 61-70
Jaar: 2001-04-01
Inhoud: Purpose: The purpose of this study was to compare the behavioural and anatomical effects of unilateral motor cortex ablation in neonatal, infant, and adult rats. Methods: Rats were given unilateral lesions of the motor cortex on the day of birth (P1), at ten days of age (P10), or in adulthood. They were trained on several motor tasks (skilled forelimb reaching, beam traversing, tongue extension), general motor activity, and a test of spatial learning (Morris water task). Results: Although all lesion groups were equally impaired at skilled reaching with the forelimb contralateral to the lesion, rats with P1 lesions also were impaired at traversing a narrow beam and at learning the Morris task. Gross anatomical analyses revealed that the P1 rats had smaller brains than the other groups, a result that may account for the larger behavioural deficits in the P1 group. Analysis of Golgi-Cox stained neurons showed that relative to control groups, all lesion groups showed an increase in dendritic length in the basilar dendrites of layer III pyramidal cells and, paradoxically a decrease in length of the apical dendrites of the same cells. Conclusions: The bilateral alterations in dendritic organization following the motor cortex lesions suggest that there has been a bilateral reor-ganization of intrinsic cortical connectivity following motor cortex lesions at any age. These alterations in connectivity are likely not identical in the young and adult animals, however, because relative to controls, both the young operated groups, but not the adult group, showed a bilat-eral drop in spine density in the basilar dendrites of layer V pyramidal cells. These findings are discussed with respect to the idea that there may be critical ages in development in which animals can use anatomical modifications to compensate for deficits produced by cortical injury.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 10 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland