Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 10 gevonden artikelen
 
 
  An Improved Method for Charging Submicron and Nano Particles with Uniform Charging Performance
 
 
Titel: An Improved Method for Charging Submicron and Nano Particles with Uniform Charging Performance
Auteur: Choi, Youngjoo
Kim, Sangsoo
Verschenen in: Aerosol science and technology
Paginering: Jaargang 41 (2007) nr. 3 pagina's 259-265
Jaar: 2007-03
Inhoud: An improved method for charging submicron and nano silver particles with uniform charging performance was developed. Monodisperse silver particles were grown into microdroplets through condensation. The aerodynamic diameter and GSD of the condensed droplets were the same regardless of their original diameter. The diameter of the droplets increased from 1.7μm to 2.5 μm as the temperature of the saturator increased from 45°C to 55°C. They were charged by an indirect corona-based charger, in which the ion-generation zone is followed by a particle-charging zone through which the condensed droplets pass. The charges of the droplets were controlled by varying the droplet size, ion concentration, and strength of electric field in the charger. The solvent of the charged droplets was evaporated in an evaporator. The size distribution of the evaporated particles was measured by SMPS spectrometer and compared with their original size distribution. The particles after evaporation were slightly larger than their original particles, due to recondensation. The total charge and number concentration of the particles were measured by aerosol electrometer and CPC, to calculate the average charge. Their electrical mobility distribution was measured by SMPS spectrometer without a neutralizer, to calculate the charge distribution and average charge of the evaporated particles. The results showed the average charges of the particles were similar, regardless of initial diameter and manner of calculation. The charge distributions of the evaporated particles were identical, except for 16.9 nm particles. Ion evaporation phenomenon of particles smaller than 40 nm in diameter was not detected.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 10 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland