Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 8 van 8 gevonden artikelen
 
 
  Vaporizing Microdroplet Inhalation, Transport, and Deposition in a Human Upper Airway Model
 
 
Titel: Vaporizing Microdroplet Inhalation, Transport, and Deposition in a Human Upper Airway Model
Auteur: Zhang, Zhe
Kleinstreuer, Clement
Kim, Chong S.
Cheng, Yung S.
Verschenen in: Aerosol science and technology
Paginering: Jaargang 38 (2004) nr. 1 pagina's 36-49
Jaar: 2004-01
Inhoud: Evaluation of injuries from inhalation exposure to toxic fuel requires detailed knowledge of inhaled aerosol transport and deposition in human airways. Focusing on highly toxic, easily volatized JP-8 fuel droplets, the three-dimensional airflow, temperature distributions, and fluid-particle thermodynamics, i.e., droplet motion as well as evaporation, are simulated and analyzed for laminar as well as locally turbulent flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Lagrange approach for the fluid-particle thermodynamics is employed with: (1) a low Reynolds number k-ω model for laminar-to-turbulent airflow, and (2) a stochastic model for random fluctuations in the droplet trajectories with droplet evaporation. Presently, the respiratory system consists of two major segments of a simplified human cast replica, i.e., a representative oral airway from mouth to trachea (Generation 0) and a symmetric four-generation upper bronchial tree model (G0 to G3). Experimentally validated computational fluid-particle thermodynamics results show that evaporation of JP-8 fuel droplets is greatly affecting deposition in the human airway. Specifically, droplet deposition fractions due to vaporization decrease with increasing ambient temperatures and decreasing inspiratory flow rates. It is also demonstrated that assuming idealized velocity profiles and particle distributions in or after the trachea may greatly overpredict particle deposition efficiencies in the upper bronchial tree.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 8 van 8 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland