Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 12 van 12 gevonden artikelen
 
 
  Simulating Condensational Growth, Evaporation, and Coagulation of Aerosols Using a Combined Moving and Stationary Size Grid
 
 
Titel: Simulating Condensational Growth, Evaporation, and Coagulation of Aerosols Using a Combined Moving and Stationary Size Grid
Auteur: Jacobson, Mark Z.
Turco, Richard P.
Verschenen in: Aerosol science and technology
Paginering: Jaargang 22 (1995) nr. 1 pagina's 73-92
Jaar: 1995
Inhoud: We present a numerical method of simulating the aerosol processes of coagulation, condensational growth, and evaporation over a hybrid size grid. In the hybrid grid, the volume of involatile core material is constant for each size bin, but the volume of volatile material fluctuates. Since particles in each bin grow and evaporate at their own pace, particles from one bin can obtain the same volume as those from another bin while maintaining different composition. Similarly, particles from different bins that grow to the same size can evaporate back to their respective original core sizes. Allowing independent growth of particles inhibits numerical diffusion since particles in each bin grow or evaporate to their actual sizes. When two particles coagulate, they form a new particle with core volume between the core volumes of particles in two other bins. We partition the new particle and its total volume between these two bins. Similarly, we adapt other processes, such as nucleation, emissions, and transport to the hybrid grid structure. The condensational growth equations developed conserve mass between the gas phase and size-distributed aerosol phase. Because the equations result in sparse matrices of partial derivatives, SMVGEAR, a sparse-matrix Gear-type integrator, solves them quickly. Furthermore, the semi-implicit coagulation equations used here conserve volume exactly, are absolutely stable, and require no iteration. Finally, we compared model solutions to both analytical and other integrated numerical solutions. To obtain numerical solutions, we developed and integrated equations that simulate simultaneous coagulation and growth of multicomponent particles.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 12 van 12 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland