Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 2 of 5 found articles
 
 
  Bioremediation of DDT-Contaminated Soils: A Review
 
 
Title: Bioremediation of DDT-Contaminated Soils: A Review
Author: Foght, Julia
April, Trevor
Biggar, Kevin
Aislabie, Jackie
Appeared in: Bioremediation journal
Paging: Volume 5 (2001) nr. 3 pages 225-246
Year: 2001-07-01
Contents: The insecticide 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT) has been used extensively since the 1940s for control of agricultural pests, and is still used in many tropical countries for mosquito control. Despite a ban on DDT use in most industrialized countries since 1972, DDT and its related residues (DDTr) persist in the environment and pose animal and human health risks. Abiotic processes such as volatilization, adsorption, and photolysis contribute to the dissipation of DDTr in soils, often without substantial alteration of the chemical structure. In contrast, biodegradation has the potential to degrade DDTr significantly and reduce soil concentrations in a cost-effective manner. Many bacteria and some fungi transform DDT, forming products with varying recalcitrance to further degradation. DDT biodegradation is typically co-metabolic and includes dechlorination and ring cleavage mechanisms. Factors that influence DDTr biodegradation in soil include the composition and enzymatic activity of the soil microflora, DDTr bioavailability, the presence of soil organic matter as a co-metabolic substrate and (or) inducer, and prevailing soil conditions, including aeration, pH, and temperature. Understanding how these factors affect DDTr biodegradation permits rational design of treatments and amendments to stimulate biodegradation in soils. The DDTr-degrading organisms, processes and approaches that may be useful for bioremediation of DDTr-contaminated soils are discussed, including in situ amendments, ex situ bioreactors and sequential anaerobic and aerobic treatments.
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 2 of 5 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands