Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 5 gevonden artikelen
 
 
  Effect of Chemical Oxidation on Subsurface Microbiology and Trichloroethene (TCE) Biodegradation
 
 
Titel: Effect of Chemical Oxidation on Subsurface Microbiology and Trichloroethene (TCE) Biodegradation
Auteur: Kastner, James R.
Domingo, Jorge Santo
Denham, Miles
Molina, Marirosa
Brigmon, Robin
Verschenen in: Bioremediation journal
Paginering: Jaargang 4 (2000) nr. 3 pagina's 219-236
Jaar: 2000
Inhoud: Research was conducted to determine the effect of chemical oxidation on subsurface microbiology and cometabolic biodegradation capacity in a trichloroethene (TCE)/perchloroethene (PCE)-contaminated aquifer previously treated with Fenton's reagent. Groundwater pH declined from 5 to 2.4 immediately after the treatment, and subsequently rose to a range of 3.4 to 4.0 after 17 months. Limited microbial growth and TCE degradation were detected in the treated zone (pH 3.37 and TCE 5 to 21 mg/L) with carbon addition (i.e., methane and phenol). Methane addition resulted in the enrichment of yeast and fungi in microcosms at low pH. In contrast, methane addition to groundwater from the control well (pH 4.9 and TCE ca. 0.7 mg/L) stimulated methanotrophic growth, indicated by methane consumption, fluorescent antibody analysis, phospholipid-based markers, and rDNA probes. TCE degradation was measured in the control microcosms, but only when phenol was added. Although higher TCE concentrations in the treated zone might have inhibited TCE cometabolism, these results also indicate that low groundwater pH resulting from the chemical oxidation process (pH 3.37 versus 4.9) inhibited TCE degradation. Methanotrophic growth and TCE biodegradation may be possible as pH increases both in the treated zone and at the leading edge of plume, as long as the local soil is able to buffer the groundwater pH. Moreover, the Fenton's reagent process could be designed to operate at a higher pH (e.g., ≥ 4.5) and/or lower hydrogen peroxide concentration to minimize detrimental effects, providing an optimal environment to couple advanced oxidation processes with bioremediation technologies.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 5 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland