Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 6 gevonden artikelen
 
 
  Evaluating noise elimination techniques for software quality estimation
 
 
Titel: Evaluating noise elimination techniques for software quality estimation
Auteur: Taghi M. Khoshgoftaar
Pierre Rebours
Verschenen in: Intelligent data analysis
Paginering: Jaargang 9 (2005) nr. 5 pagina's 487-508
Jaar: 2005-12-08
Inhoud: The poor quality of a training dataset can have untoward consequences in software quality estimation problems. The presence of noise in software measurement data may hinder the prediction accuracy of a given learner. A filter improves the quality of training datasets by removing data that is likely noise. We evaluate the Ensemble Filter against the Partitioning Filter and the Classification Filter. These filtering techniques combine the predictions of base classifiers in such a way that an instance is identified as noisy if it is misclassified by a given number of these learners. The Partitioning Filter first splits the training dataset into subsets, and different base learners are induced on each subset. Two different implementations of the Partitioning Filter are presented: the Multiple-Partitioning Filter and the Iterative-Partitioning Filter. In contrast, the Ensemble Filter uses base classifiers induced on the entire training dataset. The filtering level and/or the number of iterations modify the filtering conservativeness: a conservative filter is less likely to remove good data at the expense of retaining noisy instances. A unique measure for comparing the relative efficiencies of two filters is also presented. Empirical studies on a high assurance software project evaluate the relative performances of the Ensemble Filter, Multiple-Partitioning Filter, Iterative-Partitioning Filter, and Classification Filter. Our study demonstrates that with a conservative filtering approach, using several different base learners can improve the efficiency of the filtering schemes.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 6 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland