Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 6 gevonden artikelen
 
 
  A linear wrapper for sample subset selection in atypical detection
 
 
Titel: A linear wrapper for sample subset selection in atypical detection
Auteur: Saeed Hashemi
Verschenen in: Intelligent data analysis
Paginering: Jaargang 9 (2005) nr. 4 pagina's 329-345
Jaar: 2005-08-29
Inhoud: Subset selection with a wrapper approach to identify atypical examples can be preferable to a filter approach (which may not be consistent with the classifier in use) but its running time is prohibitive. The fastest available wrappers are quadratic in the number of examples, which is far too expensive for sample subset selection. The presented approach is a linear wrapper method that is roughly 80 times faster than the quadratic wrappers. Atypical points are defined in this paper as the misclassified points that the proposed algorithm (Atypical Sequential Ranking: ASR) finds not useful to the classification task. They may include both outliers and overlapping samples. ASR can identify and rank atypical points in the whole dataset without damaging the prediction accuracy. It is general enough that classifiers without reject option can use it. Experiments on 20 benchmark datasets and 5 classifiers show promising results and confirm that this wrapper method has some advantages and can be used in sample subset selection for atypical detection.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 6 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland