Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 6 gevonden artikelen
 
 
  A novel feature selection method for large-scale data sets
 
 
Titel: A novel feature selection method for large-scale data sets
Auteur: Wei-Chou Chen
Ming-Chun Yang
Shian-Shyong Tseng
Verschenen in: Intelligent data analysis
Paginering: Jaargang 9 (2005) nr. 3 pagina's 237-251
Jaar: 2005-09-09
Inhoud: Feature selection is about finding useful (relevant) features to describe an application domain. The problem of finding the minimal subsets of features that can describe all of the concepts in the given data set is NP-hard. In the past, we had proposed a feature selection method, which originated from rough set and bitmap indexing techniques, to select the optimal (minimal) feature set for the given data set efficiently. Although our method is sufficient to guarantee a solution's optimality, the computation cost is very high when the number of features is huge. In this paper, we propose a nearly optimal feature selection method, called bitmap-based feature selection method with discernibility matrix, which employs a discernibility matrix to record the important features during the construction of the cleansing tree to reduce the processing time. And the corresponding indexing and selecting algorithms for such feature selection method are also proposed. Finally, some experiments and comparisons are given and the result shows the efficiency and accuracy of our proposed method.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 6 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland