Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 7 gevonden artikelen
 
 
  Feature set decomposition for decision trees
 
 
Titel: Feature set decomposition for decision trees
Auteur: Lior Rokach
Oded Maimon
Verschenen in: Intelligent data analysis
Paginering: Jaargang 9 (2005) nr. 2 pagina's 131-158
Jaar: 2005-05-23
Inhoud: This paper presents practical aspects of feature set decomposition in classification problems using decision trees. Feature set decomposition generalizes the task of feature selection which is extensively used in data mining. Feature selection aims to provide a representative set of features from which a classifier is constructed. On the other hand, feature set decomposition decomposes the original set of features into several subsets, and builds a classifier for each subset. The classifiers are then combined for classifying new instances. In order to examine the idea, a general framework that searches for helpful decomposition structures is proposed. This framework nests many algorithms, two of which are tested empirically over a set of benchmark datasets. The first algorithm performs a serial search while using a new Vapnik-Chervonenkis dimension bound for multiple oblivious trees as an evaluating schema. The second algorithm performs a multi-search while using wrapper evaluating schema. This work indicates that feature set decomposition can increase the accuracy of decision trees.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland