Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 7 gevonden artikelen
 
 
  Improving the prediction performance of customer behavior through multiple imputation
 
 
Titel: Improving the prediction performance of customer behavior through multiple imputation
Auteur: Hyunju Noh
Minjung Kwak
Ingoo Han
Verschenen in: Intelligent data analysis
Paginering: Jaargang 8 (2005) nr. 6 pagina's 563-577
Jaar: 2005-01-28
Inhoud: Various predictive modeling approaches based on the customers' information may be used for selecting proper targets for a promoted product to entice customers into purchasers. However, there is a fundamental problem, the incomplete data which can yield biased results and deteriorate the accuracy of those approaches. So far, several methods such as case deletion and mean substitution are applied to handle the incomplete dataset in various domains. Those approaches are simple and easy to implement but may also provide biased results. Recently multiple imputation is suggested as a method to overcome the flaws in traditional treatments through reflecting the uncertainty of missing values in the incomplete dataset. This study is designed to introduce the multiple imputation technique and show two experimental works of several imputation methods applied to the real cases in electronic customer relationship management domain, the first with missing covariates and the second with missing targets. According to the results of the experimental works, the multiple-imputation based approaches produced the better performance than the traditional approaches in both of two case studies. Especially, the multiple imputation technique proved to be more effective in the dataset with a high missing rate than the one with a low missing rate.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland