Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 7 gevonden artikelen
 
 
  A surface-based approach for classification of 3D neuroanatomic structures
 
 
Titel: A surface-based approach for classification of 3D neuroanatomic structures
Auteur: Li Shen
James Ford
Fillia Makedon
Andrew Saykin
Verschenen in: Intelligent data analysis
Paginering: Jaargang 8 (2005) nr. 6 pagina's 519-542
Jaar: 2005-01-28
Inhoud: We present a new framework for 3D surface object classification that combines a powerful shape description method with suitable pattern classification techniques. Spherical harmonic parameterization and normalization techniques are used to describe a surface shape and derive a dual high dimensional landmark representation. A point distribution model is applied to reduce the dimensionality. Fisher's linear discriminants and support vector machines are used for classification. Several feature selection schemes are proposed for learning better classifiers. After showing the effectiveness of this framework using simulated shape data, we apply it to real hippocampal data in schizophrenia and perform extensive experimental studies by examining different combinations of techniques. We achieve best leave-one-out cross-validation accuracies of 93% (whole set, N = 56) and 90% (right-handed males, N = 39), respectively, which are competitive with the best results in previous studies using different techniques on similar types of data. Furthermore, to help medical diagnosis in practice, we employ a threshold-free receiver operating characteristic (ROC) approach as an alternative evaluation of classification results as well as propose a new method for visualizing discriminative patterns.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland