Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 7 van 7 gevonden artikelen
 
 
  Prediction of oil well production: A multiple-neural-network approach
 
 
Titel: Prediction of oil well production: A multiple-neural-network approach
Auteur: H.H. Nguyen
C.W. Chan
M. Wilson
Verschenen in: Intelligent data analysis
Paginering: Jaargang 8 (2004) nr. 2 pagina's 183-196
Jaar: 2004-05-05
Inhoud: This study presents an application using both single and multiple interval prediction models implemented with artificial neural networks to estimate the future production performance of oil wells. The single interval prediction model was developed using NOL (Gensym Corp., USA). The multiple neural network (MNN) model is a novel approach that combines a group of neural networks, with each component neural network being responsible for predicting a different time period. The approach is designed to improve the accuracy of long-term predictions. In addition to conducting both short and long term prediction of oil production, the study also investigates different approaches for modeling the application domain parameters. The MNN model for prediction of future well performance is applied to the time series data obtained from four pools of wells in the southwestern region of Saskatchewan, Canada. The results showed that a MNN model performed better than a single neural network model for long-term predictions.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 7 van 7 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland