Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 7 gevonden artikelen
 
 
  A global optimal algorithm for class-dependent discretization of continuous data
 
 
Titel: A global optimal algorithm for class-dependent discretization of continuous data
Auteur: Lili Liu
Andrew K.C. Wong
Yang Wang
Verschenen in: Intelligent data analysis
Paginering: Jaargang 8 (2004) nr. 2 pagina's 151-170
Jaar: 2004-05-05
Inhoud: This paper presents a new method to convert continuous variables into discrete variables for inductive machine learning. The method can be applied to pattern classification problems in machine learning and data mining. The discretization process is formulated as an optimization problem. We first use the normalized mutual information that measures the interdependence between the class labels and the variable to be discretized as the objective function, and then use fractional programming (iterative dynamic programming) to find its optimum. Unlike the majority of class-dependent discretization methods in the literature which only find the local optimum of the objective functions, the proposed method, OCDD, or Optimal Class-Dependent Discretization, finds the global optimum. The experimental results demonstrate that this algorithm is very effective in classification when coupled with popular learning systems such as C4.5 decision trees and Naive-Bayes classifier. It can be used to discretize continuous variables for many existing inductive learning systems.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 7 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland