Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 6 gevonden artikelen
 
 
  Building neural network forecasting models from time series ARIMA models: A procedure and a comparative analysis
 
 
Titel: Building neural network forecasting models from time series ARIMA models: A procedure and a comparative analysis
Auteur: María-Dolores Cubiles-de-la-Vega
Rafael Pino-Mejías
Antonio Pascual-Acosta
Joaquín Muñoz-García
Verschenen in: Intelligent data analysis
Paginering: Jaargang 6 (2002) nr. 1 pagina's 53-65
Jaar: 2002-05-03
Inhoud: A procedure for designing a multilayer perceptron for predicting time series is proposed. It is based on the generation, according to a set of rules emerging from an ARIMA model previously fitted, of a set of nonlinear forecasting models. These rules are extracted from the set of non-zero coefficients in the ARIMA model, so they consider the autocorrelation structure of the time series. The proposed procedure is intended to help the user in the task of specifying as simple models as possible, providing an unambiguous methodology to construct neural networks for time series forecasting. The performance of this procedure is empirically studied by means of a comparative analysis involving time series from three domains. The first part of the experiment is very extensive and works over 33 time series from the Active Population Survey in Andalusia, Spain. The training of the multilayer perceptron is performed by three different learning rules, incorporating multiple repetitions, and the hidden layer size is determined by means of a grid search. The obtained results show a better performance of these neural network models, in comparison with pure classical statistical techniques, namely ARIMA models and exponential smoothing techniques. These results are confirmed over two more concise studies from the tourist and geodynamic domains, where we graphically illustrate the superiority of the constructed neural networks in long-term forecasting, in comparison with ARIMA models.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 6 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland