Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 6 gevonden artikelen
 
 
  Improved financial time series forecasting by combining Support Vector Machines with self-organizing feature map
 
 
Titel: Improved financial time series forecasting by combining Support Vector Machines with self-organizing feature map
Auteur: Francis Eng Hock Tay
Li Juan Cao
Verschenen in: Intelligent data analysis
Paginering: Jaargang 5 (2001) nr. 4 pagina's 339-354
Jaar: 2001-11-19
Inhoud: A two-stage neural network architecture constructed by combining Support Vector Machines (SVMs) with self-organizing feature map (SOM) is proposed for financial time series forecasting. In the first stage, SOM is used as a clustering algorithm to partition the whole input space into several disjoint regions. A tree-structured architecture is adopted in the partition to avoid the problem of predetermining the number of partitioned regions. Then, in the second stage, multiple SVMs, also called SVM experts, that best fit each partitioned region are constructed by finding the most appropriate kernel function and the optimal learning parameters of SVMs. The Santa Fe exchange rate and five real futures contracts are used in the experiment. It is shown that the proposed method achieves both significantly higher prediction performance and faster convergence speed in comparison with a single SVM model.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 6 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland