Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 6 van 6 gevonden artikelen
 
 
  Neural-morphological approach for pattern classification
 
 
Titel: Neural-morphological approach for pattern classification
Auteur: R. Touahni
A. Sbihi
M. Janati Idrissi
Verschenen in: Intelligent data analysis
Paginering: Jaargang 5 (2001) nr. 3 pagina's 263-282
Jaar: 2001-08-02
Inhoud: In cluster analysis, the mode boundaries are a very important part of the hierarchy of structures that link raw data with their interpretation. The existing mode boundary detection approaches for clustering are conditioned by the adjustment of some parameters, which become critical for large dimensionality data sets. Mode boundary detection can be greatly facilitate by mapping, as a first step of process understanding, a reduction of data dimensionality. Under this assumption, an approach is discussed, based on both neural network and mathematical morphology. It requires neither a starting classification, nor an a priori number of clusters or their distribution. Data projection mapping is done using a multilayer neural network with a fast training rule based on a conjugate gradient. Mode boundaries of the underlying probability density function, estimated from the patterns in the projection space, are then easily obtained by making concepts of morphological watershed transformations suitable for their detection. The observations in the raw data space corresponding to those falling in the so-detected mode boundaries are taken as prototypes for classification. The clustering scheme, illustrated using an artificial simulation, has been applied to determine the clusters inside a set of biometrical six-dimensional data of the Guadeloupe honeybee's races.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 6 van 6 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland