Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 6 gevonden artikelen
 
 
  Hybrid systems of local basis functions
 
 
Titel: Hybrid systems of local basis functions
Auteur: Ricardo Bezerra de Andrade e Silva
Teresa Bernarda Ludermir
Verschenen in: Intelligent data analysis
Paginering: Jaargang 5 (2001) nr. 3 pagina's 227-244
Jaar: 2001-08-02
Inhoud: Since there is no individual approach that can be universally applied to effectively solve the hard problems of artificial intelligence and data analysis, hybrid systems are necessary to better tackle specific tasks by exploiting the advantages of different methodologies in a single framework. Based on known results of combining neural networks and rule-based systems, this work presents a hybrid system with the purpose of simplifying rule sets obtained from rule induction algorithms on classification problems without increasing the accuracy error. This is motivated by assuming that simplicity can lead to more understandable models and rule induction algorithms often provide an excessive number of rules necessary to classify future examples within a given accuracy error, even after pruning. Experimental evidence suggests effective gains on a benchmark of sixteen data sets. Experiments were also performed to detect the effect of different components of the proposed approach in achieving the results and so helping to explain why this hybrid system works.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 6 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland