Digital Library
Close Browse articles from a journal
 
   next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 1 of 6 found articles
 
 
  A comparative study of saliency analysis and genetic algorithm for feature selection in support vector machines
 
 
Title: A comparative study of saliency analysis and genetic algorithm for feature selection in support vector machines
Author: Francis Eng Hock Tay
Li Juan Cao
Appeared in: Intelligent data analysis
Paging: Volume 5 (2001) nr. 3 pages 191-209
Year: 2001-08-02
Contents: Recently, support vector machine (SVM) has been receiving increasing attention in the field of regression estimation due to its remarkable characteristics such as good generalization performance, the absence of local minima and sparse representation of the solution. However, within the SVMs framework, there are very few established approaches for identifying important features. Selecting significant features from all candidate features is the first step in regression estimation, and this procedure can improve the network performance, reduce the network complexity, and speed up the training of the network. This paper investigates the use of saliency analysis (SA) and genetic algorithm (GA) in SVMs for selecting important features in the context of regression estimation. The SA measures the importance of features by evaluating the sensitivity of the network output with respect to the feature input. The derivation of the sensitivity of the network output to the feature input in terms of the partial derivative in SVMs is presented, and a systematic approach to remove irrelevant features based on the sensitivity is developed. GA is an efficient search method based on the mechanics of natural selection and population genetics. A simple GA is used where all features are mapped into binary chromosomes with a bit ``1'' representing the inclusion of the feature and a bit of ``0'' representing the absence of the feature. The performances of SA and GA are tested using two simulated non-linear time series and five real financial time series. The experiments show that with the simulated data, GA and SA detect the same true feature set from the redundant feature set, and the method of SA is also insensitive to the kernel function selection. With the real financial data, GA and SA select different subsets of features. Both selected feature sets achieve higher generation performance in SVMs than that of the full feature set. In addition, the generation performance between the selected feature sets of GA and SA is similar. All the results demonstrate that that both SA and GA are effective in SVMs for identifying important features.
Publisher: IOS Press
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 1 of 6 found articles
 
   next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands